
DOCUMENT RESUME

ED 393 912 TM 024 913

AUTHOR Singley, Mark K.; Bennett, Randy Elliot
TITLE Toward Computer-Based Performance Assessment in

Mathematics.
INSTITUTION Educational Testing Service, Princeton, N.J.
REPORT NO ETS-RR-95-34
PUB DATE Oct 95
NOTE 24p.

PUB TYPE Reports Evaluative/Feasibility (142)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Assisted Testing; Item Analysis;

*Mathematics Tests; Multiple Choice Tests;
*Performance Based Assessment; *Problem Solving;
Schemata (Cognition) ; *Scoring; *Test Construction;
Test Items

ABSTRACT
One of the main limitations of the current generation

of computer-based tests is its dependency on the multiple-choice
item. This research was aimed at extending computer-based testing by
bringing limited forms of performance assessment to it in the domain
of mathematics. This endeavor involves not only building task types
that better reflect valued problem solving; but also creating an
integrated set of supports including easy-to-use interfaces;
tutorials to teach novice computer users how to negotiate those
interfaces; tools that help test developers create items quickly; and
mechanisms for scoring constructed responses more efficiently. The
cornerstone of the effort's thinking a.bout task generation is the
notion of . problem schema, a set of variables and constraints that
define a problem's deep structure. A version of a Test Developer's
Assistant is being developed that would allow for item creation and
tracking, information retrieval, and item analysis in computer-based
performance assessment. (Contains two figures, four tables, and seven
references.) (Author/SLD)

Reproductions supplied by EDRS are the best that can be made
from the original document.

0

U S DEPAWTMENT OF EDUCATION
Ott.ce ot EducetanaI Rematch and Improvement

LOUcATI0NAL RESOURCES INFORMATION
CENTER (ERIC)

11,s document has bean reproduced as
rece.ned from the oerson or organaahon
oncentong

O Mmot changes have been made to improve
MG.:Auction quality

Po.nts of view Or oprmons stated in thrsclocu-
rnont do not necessanly reps sent ontcral
OE Rt posthon Or potCy

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

[

TO THE EDUCAIIONAL RESOURCES
INFCMAI ION E N ER tERIC

RR-95-34

TOWARD COMPUTER-BASED PERFORMANCE
ASSESSMENT IN MATHEMATICS

'

Mark K. Singley
Randy Elliot Bennett

0
Educational Testing Service

Princeton, New Jersey
October 1995

flEST COPY AVAILABLE

Toward Computer-Based Performance Assessment

in Mathematics

Meth K. Sing ley and Randy Elliot Bennett

Educational Testing Service

Princeton, NJ 08541

Copyright 1995 Educational Testing Service All rights reserved

2

Abstract

One of the main limitations of the current generation of computer-based tests is its
dependency on the multiple-choice item. Our work is aimed at extending computer-based
testing by bringing limited forms of performance assessment to it in the domain of
mathematics. This endeavor involves not only building task types that better reflect valued
problem solving, but also creating an integrated set of supports including easy-to-use
interfaces, tutorials to teach novice computer users how to negotiate those interfaces,
tools that help test developers create items quickly, and mechanisms for scoring
constructed responses more efficiently.

3

Toward Computer-Based Performance Assessment in Mathematics

As for most businesses and social services, large-scale testing programs are coming
into the technological age. Now available on computer are educational placement tests
(the College Board's Computerized Placement Tests and ACT's COMPASS), admissions
examinations (the GRE General Test), selection measures (Armed Services Vocational
Aptitude Battery) and licensure tests for teachers (Praxis I).

Computer-based tests have important advantages. They offer conveniences to
examinees in that they can be taken more frequently than group-administered paper-and-
pencil tests, be given in a more comfortable Ind relaxed setting, and have results
unofficially reported immediately upon the conclusion of testing. They offer measurement
advantages too: adaptive tests can be shorter than conventional tests without any loss in
precision and measure with substantially equal accuracy throughout the score scale.

Although they have clear advantages, computer-based tests have impoftant
limitations too. One critical limitation is the dependence of the first generation of such
tests on traditional multiple-choice items. As testing programs incorporate new
technology, ways must be found to ensure that this technology facilitates rather than limits
the assessment of desired skills. Toward this end, we advocate using various delivery and
capture technologies to permit use of a wide array of performance tasks (Bennett, 1994).
In this view, some performance tasks might be delivered and responded to on computer.
In cases where the nature of the task or the quality of the problem solving would be
altered by using the computer, we advocate delivering the task in the traditional manner
and, if possible, digitally capturing the response so that it can be processed more efficiently
(e.g., scanning a handwritten essay).

The current paper describes that aspect of our work aimed at extending computer-
based testing so as to bring limited forms of performance assessment to it. In particular,
we review the development of performance tasks intended for large-scale testing in
mathematics. This work includes not only the performance tasks themselves, but also
interfaces for delivering the tasks and capturing the responses, tutorials to teach novice
computer users to negotiate this interface, item writing tools for test developers, and
mechanisms for scoring item responses.

Some Simple Performance Tasks

Test questions calling for a numeric entry can be easily presented and scored by
computer. Such questions require almost no response processing beyond determining
simple mathematical equivalences (e.g., that 1.0 = 1) or possibly applying tolerances for
how close to the key value the examinee's response must be to receive credit. Table 1
gives an example from Praxis I, a basic skills test for prospective teachers

t;

Table I . A numeric entry item from Praxis I.

4

What is the value of x?

24 = 16
72 x

X = .

Note. Adapted from Praxis I: Academic Skills Assessments--Tests at a Glance. Princeton, NJ:
Educational Testing Service, 1994.

A logical next step is to pose questions calling for answers that must be rendered
in mathematical symbolism, such as expressions or equations. Such items are valuable in
that they involve specifying functional relationships between variables and can thereby
focus on problem representation as opposed to the more rote aspects of problem solution.
Table 2 shows four such problems which, if they could be used on computer-based tests,
would not only broaden the diversity of skills that could be assessed in constructed-
response form but conceivably tap skills that the traditional multiple-choice item could not
as easily accommodate (see item 43 particularly).

Item 41 represents a highly general class of questions for which answers must take
the form of numbers or expressions. Item 42 is a special case of 41 in which the answer
must be any number or expression drawn from a class of possible answers, where each
answer is quantitatively distinct. Item 43 is an extension of 42, asking the examinee to list
several such answers from this class. Last, item 44 calls for not only an answer but also
the work leading to that answer.

Interface Designs

The items in Table 2 represent general forms that can be used to test--dependin
upon the capabilities and intentions of the it(im writer--a subset of the problem-solving
skills that performance assessment was intended to tap or, alternatively, lower-level
procedural knowledge. A second critical factor in determining the nature of the skills
assessed, however, is how these item types are implemented on computer, in particular
how the machine-human interaction is structured

5

Table 2. Examples of items calling for symbolic answers.

1. A normal line to a curve at a point is a line perpendicular to the tangent line at the point. The equation
of the normal line to the curve y = 2x2at the point (1,2) is given by y =

2. Give an example of a functionf(x), for which j(a+b) =f(a) +fib).

3. Give up to five examples of a system of two linear equations in x and y that has the solution x = 3 and y

= 4 and for which at least one of the equations has nonzero coefficients for both x and y.

1.

2.

3.

5.

4. During a break in its program at 6:15 p.m., a TV station began a fund-raising campaign that has a goal
of raising $13,900 through viewer solicitation. It raised the first $7,000 at the rate of $1,200 per minute.
When a special appeal began, pledges came in at the rate of $3,000 per minute. If fimds continue to come
in at the same rate as during the special appeal, until what time, to the nearest minute, must the program
break continue in order for the station to reach its goal?

Since cornputzr-based performance assessment is an emerging field, there are no
guidelines and few examples on which to base interface designs. One source of
information is the intelligent tutoring literature, which describes several interfaces built for
collecting mathematical expressions (Brown,1985; McArthur, Stasz, & Hotta; 1986-87;
Singley, Anderson, & Gevins, 1991). However, because these interfaces were built to
support the requirements of instruction, they offer only limited conceptual guidance for

the high-stakes assessment context.

6

A fundamental tenet of psychological measurement is that, in any test situation,
one wants to maximize construct-relevant variance and minimize construct-irreiviant
variance. Although the introduction of computer-based tests offers many potential
advantages in terms of validity, one potential downside is the introduction oi construct-
irrelevant variance associated with the use of an unfamiliar interface.

For the purposes of this discussion, we can view test performance as being
composed of the operation of two independent subcomponents. First, there is the domain
component which is what the test is trying to measure. So, according to our simple
model, the examinee first uses domain knowledge and skills to determine the answer to a
test question. However, the results generated by this domain component cannot be
measured directly through electrodes on the scalp; they must be expressed in some way.
So, after determining the answer, the examinee uses expressive skills to share it with the
examiner. Of course, for complicated problems involving substeps, the examinee may
express parts of the solution as he or she goes along (this raises interesting complications
concerning the role of external memory in problem solving). But, even though they are
interleaved in time, we can still regard the domain-relevant and expressive components as
largely independent.

What are the implications of this simple model of skilled performance for interface
design? Minimally, the interface should allow for the expression of all solutions that might
be generated by examinees. Otherwise, we have a bad Whorfian interaction of sorts,
where the interface is limiting the kinds of solutions that are possible. One might imagine
both good and bad solutions that are inexpressible by an interface; both cases seem to be
harmful to validity.

Since the expressive component is not the construct of interest, the variance
contribution it makes to the total measurement should be minimized. This means ideally
all examinees should be equally facile with the interface. The goal of interface design
should be to allow all examinees, with minimal training prior to taking the test, achieve
more or less asymptotic levels of expressive competence. We essentially want to insure a
ceiling effect for the interface component of test performance.

For efficiency of measurement, examinees should spend as small a proportion of
their total time expressing their answers as possible, as this allows them to spend relatively
more time on construct-relevant activities. To cite an extreme example, an interface which
required examinees. to draw graphs of equations by filling in individual bits in a bitmap
editor might be easy to learn, but it would be unacceptable in terms of the amount of time
examinees spent expressing their answers

In addressing these general concerns, we have been guided by several specific
criteria for interface design adapted from Sebrechts, Bennett, and Katz (1993). These
criteria are:

1. Ease of learning. Instructional applications and produx.tivity tools like word
processors and spread sheets are used on a repeated basis, so some amount of time spent

7

learning to negotiate the software can usually be justified. In contrast to these
applications, most individuals take a high-stakes test like the GRE General Test only once
Given the infrequency of use, the time needed for learning must be extremely short.

2. Ease/Efficiency of use. In addition to being easy to learn, the interface should
be simple to negotiate once it is learned. Entering and editing responses should be
straightforward and efficient. Lack of keyboard facility should not impede the examinee.

3. Problem-solving fidelity. Because we are primarily interested in assessing
rather than engendering problem-solving skill, we wish to observe that proficiency under
conditions that are as naturalistic as possible. In paper-and-pencil form, the constraints on
problem solving tend to be minimal: Examinees are free to write anywhere on the page in
any direction, draw diagrams, formulate syntactically incorrect equations, and do
calculations mentally.

4. Response interpretability. Whereas loose constraints characterize naturalistic
problem solving, they can pose considerable problems for automatic analysis. Thus, some
constraints need to be imposed to facilitate machine understanding. The challenge is in
finding an appropriate balance that maximally facilitates automatic analysis and does
minimal damage to problem-solving fidelity.

5. Flexibility. One of the benefits of computer-based delivery is the ability to vary
constraints. The interface should permit certain constraints to be switched on and off
depending upon the needs of the particular testing program.

6. Extensibility. Our interface should be a building block toward a more complete
performance assessment system. As such, the interface must be designed and written to
be easily extensible.

7 . Consistency with ETS computer-based testing standards. Among other things,
these standards define conventions for machine-user interaction and screen display.
Conforming to these standards makes it easier to maintain software across the different
testing programs. Examinees also benefit as they must learn only one set of conventions to
take an ETS test.

Figure 1 presents the current interface for items whose answers take the form of
numbers or single expressions. Many features of the interface promote ease of learning
and use. The entry of expressions is completely mouse-driven, so as not to penalize users
who are unfamiliar with the keyboard. Digits and arithmetic operators appear in the
standard calculator configuration, which makes them easier to find. A menu of alphabetic
characters to use as variables is easily accessed by a click of a button. The interface
provides for superscript and subscript modes as opposed to having users enter syntactic
markers like carats to denote exponentiation. The user simply clicks on the "superscript"
button and the next number appears in the superscript position. The interface also displays
complex expressions involving division graphically with a horizontal division bar as
opposed to the standard slash. Thc natural, graphical representation ofsuperscripts,

8

subscripts, and division makes it easier for users to parse expressions they have just
entered and minimizes the chances of a mismatch between the system's interpretation of
an expression and the user's intention.

The interface imposes certain minimal constiaints on the entry of expressions to
minimize construct-irrelevant errors and facilitate interpretation and scoring. For example,
the interface disables certain buttons on the soft keyboard based on the current entry mode
selected. If the user has selected superscript mode, the interface disables the entry of
certain mathematical operators like multiplication and division as well as alphabetic
characters, as only the digits, +, and - are valid superscript characters. Again, this
minimizes the occurrence of what are often simply typing errors and increases the chances
we will get an interpretable, scorable response. Also, when users submit their final
answer, the interface checks the expression for syntactic correctness. For example,
expressions are flagged for the inappropriate juxtaposition of operators (e.g., a
multiplication symbol followed immediately by a division symbol) and malformed numbers
(e.g., a number containing two decimal points). Also, parentheses must be completely
balanced so that the user's intentions are made clear.

The interface is completely generic for symbolic expression entry, and could easily
be reused in other testing contexts. This would minimize the learning burden on users
taking multiple quantitatil, tests. Even for the adept computer user, however, such an
interface may require orientation. For that reason, a brief tutorial was created to
familiarize examinees with the response type. This tutorial introduces the symbol palette
and shows how to formulate expressions using features like the subscript and superscript
radio buttons and the variable and constants menu. Figure 2 shows one of the screens
from this tutorial. For the benefit of novice computer users, more general tutorials are
also offered. These tutorials go over using the mouse, scrolling, and other fundamentals
needed to take computer-based tests effectively.

Scoring Mechanisms

An abiding problem that limits the use of performance tasks in large-scale
assessments is 'die high cost of human scoring. We have been working to develop
software that can automatically score broad classes of symbolic mathematical responses
without human assistance. To build these capabilities, we have drawn on recent
developments in symbolic mathematical computation. The subfield of symbolic
computation within cc_nputer scknce has made enormous strides in the last two decades.
Twenty-five years ago, the simplification and canonicalization of mathematical expressions
was not well understood and was considered to be an advanced topic in artificial
intelligence. Today, sophisticated algorithms for doing symbolic mathematical
transformations have been specified and ongoing work in the field is devoted to the fine-
tuning of these algorithms (Norvig, 1993). These algorithms have been packaged in such
commercially-available software packages as Mathernatica, Maple, and Reduce.

9

We have been working to adapt these symbolic computation algorithms for
assessment purposes. To date, we have developed two capabilities: 1) a system that can
dichotomously score single multivariate rational expressions, and 2) a system that can
assign full or partial credit scores to extended multi-step responses on problems involving
linear systems of equations

Scoring Single Expressions

Many problems are posed in mathematics that involve the ccnstruction of a
symbolic mathematical expression as the response (e.g. problem 1 in Table 2). We have
developed general, accurate, cost-effective, and immediately usable routines that will
dichotomously score rational expressions of arbitrary complexity. The routines are
general in that they can be used for any test item whose answer is a rational expression.
They are accurate in that, once debugged, foe algorithms should produce correct results
in all cases. They are cost-effective in that entering the key for a new item takes seconds,
not the days, weeks, or even months that might be required in a knowledge-based scoring
system. Finally, the routines are immediately usable, evidenced by the fact that they are
now being prepared for pilot testing in the new GRE Mathematical Reasoning Test.

As mentioned above, the software can dichotomously score rational expres-sions,
i.e. multivariate polynomials that may or may not involve division. Here are some
examples of such expressions:

(1) x2+7x+12

(2)
(x3 y2

x + y

(3)
(m 2 p)(n 2p)

4

(4)
4 4

A major problem in recognizing the correctness of expressions such as these lies in
the fact that there are an infinite number of ways to express the same mathematical
relationship. This is the problem of mathematical paraphrase. For example, expression
(4) above (which happens to be the answer to problem 1 in Table 2) has the following
equivalent forms, all of which were entered as correct responses by examinees in a recent
field test:

10

x 9
(5)

4 4

(6) 25x + 2 25

(7)
(9 x)

4

(8)
(x+ 9)

4

1(9) 2 (x 1)
4

As should be apparent, even in this simple case, there are an infinite number of
equivalent forms. The program we've constructed uses principles of symbolic
computation to reduce equivalent rational expressions to a single normal form. (This
normal form, by the way, is far removed from the surface-levt.! iepresentation of these
expressions.) Once in this form, the equivalence of expressions can be easily determined

Another problem plaguing the automatic scoring of rational expressions is the
problem of numerical imprecision. This problem arises whenever a response (or
intermediate forms leading to a response) involves non-integer values and rounding or
approximation is required. The routines we have developed allow a test developer to
associate an error term (e.g. 10-5) with each question that specifies the precision of match
required in order for a response to be scored as correct.

Scoring Multiple-Line Responses

In many assessment situations, it would be useful if it were possible to collect
information not only about the final result of an examinee's thinking but also something
about the process by which the examinee arrives at that result. Such information could be

used for diagnostic purposes or as a basis for assigning partial credit. In mathematics,
many problems involve multiple steps which lead to a final solution. When examinees
work on paper, many of these intermediate steps are written down, leaving a trace of the
solution process which cculd be subjected to analysis. We have been working to develop
algorithms that can analyzo such multi-step responses in terms of correctness and
completeness.

We have restricted our attention to problems that can be construed as involving
linear systems of equations. Many standard algebra word problems fall into this category.

1 1

For example, here is an algebra word problem that appeared on a recent S AT in multiple-
choice format:

Excluding rest stops, it took Juanita a total of 10 hours to
hike from the base of a mountain to the top and back down
again by the same path. If while hiking she averaged 2
kilometers per hour going up and 3 kilometers per hour
coming down, how many kilometers was it from the base to
the top of the mountain?

The key to our analysis of responses to such problems is the assertion that word
problems can be characterized and categorized in terms of the underlying set of equations
that relate the entities of the problem to one another. According to this analysis, problems
that superficially appear quite distinct may in fact be instances of the same underlying
problem structure, or schema (Mayer, 1981). The Juanita problem is an instance of the
round-trip schema. The round-trip schema involves the following equations:

(10) d, = du + dd
(11) t, = td

(12) du = ru* tu
(13) dd - rd * td
(14) = rt * tt
(15) du --- dd

This set of variables and primitive equations defines an entire class of problems.
Given a set of variables and equations such as this, a particular problem within the class is
represented as a set of variable assignments and a goal. Table 3 defines the schema
variables and gives their values in the context of the Juanita problem. Table 4 organizes
the schema equations into a table. One of the relationships in the table, ru + rd = r,, does
not hold. However, the other relationships are com.ct.

Table 3. Variables, their meanings. and their values.

VARIABLE MEANING VALUE

du distance up
distance down

x (goal)
unknowndd

cl, distance total unknown
tu time up unknown

td time down unknown
tr time total 10 h

r rate up 2 km/h
rd rate down 3 km/h
rt rate total unknown

12

Table 4. Round-trip schcma equation table.

part + part = whole
-

distance = du dd dt

rate * ru rd rt

time tu td tt

In the sample problem, equations (11), (12), (13), and (15) must be instantiated
with the given ir ";.)rmation and composed together to create the equation that provides the
solution-

(16)
2 3

where d = du or dd

Using algebra, one can determine from this equation that d = 12. Unfortunately
from the standpoint of analysis, there are many different ways for an examinee to arrive at
such an answer. Furthermore, there are many ways in which an examinee might evidence
some level of putial understanding in an errorful solution. For example, an examinee
might show the following work when solving the Juanita problem:

(17) tu = If
(18) t, = 10
(19) 2d+ 3d= 10
(20) d = 2

This solution is incorrect, but much of the work shown is valid and it therefore
may be deserving of partial credit. How do we systematically analyze such responses9

Of course, the problems of mathematical paraphrase and numerical imprecision
outlined above still hold in the analysis of multiple-line responses. But in addition to these
problems, there are many others:

Many different strategies for solving a problem exist; all valid strategies must be
accommodated in the analysis.

* Substeps may be combined; the examinee is free to determine the granularity of each
step.

* Substeps may be skipped; certain calculations or symbolic transformations might be
done in the examinee's head

e Substcps may be inconsistent; one step may directly contradict another

13

Substeps may be partially correct; a single step may be composed of correct and
incorrect elements.

The solution trace may make use of multiple symbol systems (e.g. fi3ures, tables,
mathematical symbols, natural language).

For the purposes of the present work, we have assumed that the examinee's
response will be composed entirely of syntactically correct expressions or equations
involving numbers, mathematical symbols and units, and all the variables that appear in the
solution must be defined in terms of their problem referents. We have chosen to defer the
analysis of supporting figures and tables for now.

Given these assumptions about the kind of input we receive from examinees, we
apply techniques from constraint logic programming to analyze the examinee's response.
Constraint logic programming is an extension to logic programming (e.g. Prolog) that
allows for the declarative representation of a quantitative problem as a set of linear
constraints. Once represented in this way, the answer to the problem can be easily proven
by propagating the constraints. If the problem is underdetermined (i.e. there are an
insufficient number of constraints to uniquely determine the solution), the system can
derive the most constrained functional relationship between the goal variable and other
variables in the problem. We are using constraint logic programming not to solve
problems directly but rather to determine the relationship between a canonical
representation of the constraints of the problem (the schematic description) and an
examinee's response.

As outlined above, we first develop a structural, schematic description of the
problem we are analyzing. This aescription is composed of a set of primitive equations, a
set of given variables, and a goal variable. With this problem description in hand, we do a
two-pass analysis of the response:

Correctness: We first determine whether the response is correct, i.e. whether
what is presented in the response is consistent with the problem description To
do this, we try to determine whether the response can be derived from the problem
description. We frame the problem in terms of a logical proof: Given the problem
description, is it possible to prove the response? If it is, we at least know that the
equations and values of variables presented in the response are consistent with the
problem description. However, we still do not know whether the examinee has
represented all of the problem constraints in the response and has derived the final
answer.

If we determine that the examinee's response is not correct, we then systematically
vary the constraints in the problem description and try again to prove the
correctness of the response. In other words, we try alternative sets of premises
(alternative problem descriptions) and see whether any of these sets can prove the
conclusion (the response). For example, we may propose a different problem

14

description that replaces all primitive constraints of the type d= rt (equations 12,
13, and 14) with the errorful variant t = rd. If, after degrading the problem
description in this way, we are successful in proving the response, we have a very
specific account of the error in the response: We know which constraint has been
misrepresented and in what way. (It turns out that in the sample response shown
above, two errors of this type are present in line 19.)

Completeness: Once the analysis for correctness is completed, we must analyze
the response for completeness. To determine whether the response is complete,
we simply reverse the premises and conclusions of our earlier proof: Given the
examinee's response, is it possible to prove the problem description? If it is, then
we know that at some level all of the relevant constraints are represented in the
response, and the response is complete. If it is not, we attempt to determine what
is missing in the response. We do this through a procedure very similar to the one
outlined above for correctness: We systematically supplement the response with
constraints from the problem description and attempt to determine the minimal set
of constraints from the problem description that, when added to the response,
make it possible to solve the problem. In this way, we can once again pinpoint
precisely which constraints are missing from the examinee's response. For
example, consider the following correct yet incomplete response to the Juanita
problem:

(21) du=2tu
(22) dd = 3td
(23) 2tz, = 3td

All of the work shown is correct, but the examinee has failed to provide all of the
constraints necessary to uniquely determine the value of dz, or dd. By
systematically supplementing this response with constraints drawn from the
problem description, we can determine that, with the addition of the constraints
it = td (equation 11 above) and t, = 10 , the problem is solvable. Thus, once
again we have a precise description of what is present and what is missing in the
response.

In sum, our approach involves representing a particular problem as a set of
constraints, and then determining which (if any) of those constraints is violated and/or
absent in the response. By reducing a particular response to the set of quantitative
constraints it represents, the analysis bypasses many of the problems outlined earlier
concerning variations in the surface forms of responses: multiple strategies, skipped steps,
composed steps, and partially correct steps. According to this approach, two responses
are equivalent if they can be reduced to the same set of primitive constraints

Such an approach lends itself well to the implementation of partial credit scoring
rubrics. Subscores can be associated with each constraint in the problem description. The
presence or absence of the constraint in the response can either increment a base score or

15

decrement a total score for the problem, respectively. Also, subscores can be associated
with common errors, i.e. common degradations of the problem description. In addition,
such rubrics need not be created for each individual problem; they can be created once and
for all for an entire class of problems if they are done at the level of the problem schema.

Currently, we are putting the finishing touches on a prototype system that
performs the kinds of analyses described here. We are about to subject the system to a
formative evaluation that will involve an in-depth analysis of hundreds of multi-line
responses collected in a new experimental version of the SAT II Mathematics
Achievement Test. This test was administered on paper, so we will be transcribing the
examinees' responses into electronic format. (This involves making minimal assumptions
about the kind of interface the examinees might use.) In our evaluation, we will be
comparing the partial-credit scores assigned by our system with those assigned by human
judges.

Tools for Item Development

We are just beginning to apply some of the ideas we have been pursuing in the
realm of automatic scoring to the task of item generation. Once again, the cornerstone of
our thinking is the notion of a problem schema, a set of variables and constraints that
define a problem's deep structure. Given this notion of a schema, a wide spectrum of item
generation possibilities exists which range from the deep to the superficial.

Given a set of primitives (e.g. d = rt d, ± d, = d etc.), generate a set of interesting,
problem schemas. These schemas could be arranged into a taxonomy of sorts, and
could serve as a repository cf ideas for test developers.

Given a particular schema (e.g. the round-trip schema defined above), generate
interesting structural eiaborations. This involves adding one or more constraints. For
example, in the round-trip schema, one could add some relationship between the rate
for the first leg and the rate for the second.

Given a particular schema, generate all the possible problem structures A problem

structure is defined as a partirnlor configuration of given and goal variables.

Given a problem structure, generate and/or select a problem context Thus, the round-
trip schema could be instantiated in a hiking context, a boating context, etc.

Given a context, vary the noun referents for problem variables and generate different

sets of values for given variables. For example, Juanita becomes Juan and the total
time changes from 10 to 20 hours.

16

Given a context, noun referents and variable values, generate a natural language cover
story.

We envision embodying the above functionality in an integrated system that offers
more to the test developer than just item generation capabilities. We have been
developing a vision of a Test Developer's Assistant that, in addition to semi-automatic
item generation, would offer three other distinct types of functionality:

1. Item creation and tracking. These are basic word processing functions that
form the backbone of functionality for the system. Users should be able to type in items,
edit them, import graphics, etc. Items that are created with the system should be
compatible with test delivery software. Item management features should allow the test
developer to track the location and status of an item throughout its life cycle.

2. Information retrieval. While authoring new items, test developers should be
able to search both local and remote sources for ideas and raw materials for items (text,
figures, etc.). Part of this effort may actually entail putting useful and frequently used
sources online ourselves (e.g. math tex:books). The material retrieved through searches
should be easily and directly usable by the item creation tools, e.g. through cutting and
pasting. A special case of the above effort would be gathering together existing instances
of items and putting them online in a searchable or browsable form. When available, item
statistics should be stored with each item and should be a searchable feature (e.g. a
possible search is to retrieve all instances of word problems within a certain range of
difficulty). In addition, items would be indexed in terms of whx.ever conceptual
frameworks are used in either the automatic generation or analysis of items. Again, the
text/graphics of library items should be directly accessible by the item creation tools, i.e.
the user should be able to edit the text of a library item to create a new item.

3. Iteir analysis. Once an item is reasonably complete (regardless of how much
machine assistance is rendered in its creation), it can be subjected to an analysis that will
attempt to predict its level of difficulty. This analysis will be based on the availability of
psychological theory that relates features of the item to item statistics. Depending upon
the set of features for a particular item type, the analysis may proceed completely
automatically or may require some human assistance. One possibility is to use templates
while authoring items so that analysis can proceed automatically.

Conclusion

This paper has described our efforts to bring limited forms of performance
assessment to large-scale computer-based testing programs. As should be evident, these
efforts are substantial, involving not only development of the open-ended tasks but also
creation of various supporting tools. It is worth reiterating that, in contrast to the
performance tasks used in some paper-and-pencil testing programs, ours are very limited
the test items are relatively discrete and the responses have comparatively few

17

components. Delivering more complex computer-based tasks will undoubtedly require
bareater levels of effort. Just as clearly, the effort required to deliver performance tasks in
computer-based testing programs will at some point exceed the benefits that can be
derived. Whereas our work has given us a much better understanding of the costs
involved, judgments of the benefits will take longer. The case for computer-based
performance assessment in mathematics, as elsewhere, will need to rest on evidence that
these tasks measure valued mathematical problem-solving skills effectively, are fair to
population subgroups, are favorably viewed by examinees and decision makers, and have
positive (or at least no negative) educational effects.

18

References

Bennett, R. E. (1994). An electronic infrastructure for a future generation of tests
(RR-94-61). Princeton, NJ: Educational Testing Service.

Brown, J. S. (1985). Process versus product: A perspective on tools for
communal and informal electronic learning. Journal of Educational Computing Research,
1 179-201.

McArthur, D., Stasz, C., & Hotta, J. Y. (1986-87). Learning problem-solving
skills in algebra. Journal of Educational Technology Systems, 18, 303-324.

Mayer, R. E. (1981). Frequency norms and structural analysis of algebra story
problems into families, categories, and templates. Instructional Science, 10, 135-175

Norvig, P. (1993). Paradigms of artificial intelligence pro_gramrning. San Mateo,
CA: Morgan Kaufmann.

Sebrechts, M. M., Bennett, R. E., & Katz, I. R. (1993). A research platform for
interactive performance assessment in graduate education (RR-93-08). Princeton, NJ:
Educational Testing Service.

Singley, J. K., Anderson, J. R., & Gevins, J. S. (1991). Promoting abstract
strategies in algebra word problem solving. In Proceedings of the International
Conference on the Learning Sciences. Charlottesville, VA: Association for the
Advancement of Computing in Education.

1 9

Figure Captions

Figure 1. An interface for presenting mathematical problems requiring numeric entries or single
expressions.

Figu: _ 2. A tutorial screen for teaching examinees how to enter responses that take the form of
mathematical expressions.

k 4Se s5c.". 'V
it ST^f",::' L.

a . ' I -

III - 8 ` i I " ' 9 - 11 II - II

- III. - 111

EIKE KW M
I Ifff Ed

a EN DOUR El

111
Quit Exit rime Review

4007.z,'S .

rAdtk Erase (aft Help Next

9 lcti ..

Some questions require you to enter a mathematical expression in an answer box using
the on-screen keyboard shown below. Any mathematical expression that is algebraically
equivalent to a correct answer will be scored as correct. Enter the expression in the order
that you would write it.

To enter a letter, first click on the key to display the letter palette, then click on a letter.

To enter 5x 1, you must use parentheses around 5x 1.
.Y

Try itclick on the keys in this order: MD

01

key if you want to erase the expression.

When finished, click on one of the icons on the right.

0 Exponent

0 Subscript

BEST COPY AVAILABLE

